• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance of modified self-healing concrete with calcium nitrate microencapsulation

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2017
    Author
    Al-Ansari, Mohammed
    Abu-Taqa, Ala G.
    Hassan, Marwa M.
    Senouci, Ahmed
    Milla, Jose
    Metadata
    Show full item record
    Abstract
    This study investigates the strength reduction associated with incorporating calcium nitrate microcapsules in concrete. It also proposes modifications to the calcium nitrate micro encapsulation procedure to minimize the concrete strength reduction. These modifications consist of altering the continuous phase composition and keeping that of the aqueous phase the same. Amounts of 1%-10% of low Hydrophilic-Lipophilic Balance (HLB) emulsifier and 0.1%-1.0% of oil-soluble sulfonic acid catalyst (by weight of water in the aqueous phase) were dissolved in an organic solvent to prepare the continuous phase. The average diameter and shell thickness of the produced microcapsules were characterized using Scanning Electron Microscopy (SEM). Mortar mixes were prepared for various calcium nitrate concentrations of microcapsules that were encapsulated using the modified procedure. The compressive and flexural strengths and the elastic modulus of the mortar mixes were determined. The results show that the use of the modified encapsulation procedure resulted in a statically insignificant reduction of both compressive and flexural strengths compared to the original encapsulation method. The SEM micrographs of the fracture surface of the samples containing microcapsules showed that the strength reduction may be due to the agglomeration of the un-hydrated particles on the surface (shell) of the microcapsules. The compressive and flexural strengths of samples prepared using the proposed encapsulation procedure were enhanced compared to those prepared using previous encapsulation techniques.
    DOI/handle
    http://dx.doi.org/10.1016/j.conbuildmat.2017.05.152
    http://hdl.handle.net/10576/16997
    Collections
    • Civil and Environmental Engineering [‎862‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video