• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An adaptive Kalman filter based traffic prediction algorithm for urban road network

    Thumbnail
    Date
    2017
    Author
    Mir, Zeeshan Hameed
    Filali, Fethi
    Metadata
    Show full item record
    Abstract
    Frequent traffic congestion and gridlocks are causing global economies staggering cost in terms of fuel consumption, time wastage, and public health. To rectify this problem, many advocates combining Information and Communication Technologies (ICT) and traffic engineering concepts for better traffic management. Timely and accurate traffic prediction and management are central to the ICT-based Intelligent Transportation Systems (ITS). In this paper, we presented a traffic prediction model based on Kalman filtering theory, which optimizes the prediction of speed by minimizing the variance between the real-Time speed measurement and its estimation. The prediction model predicts the speed across high-level roadway segments using historical and real-Time speed measurements (spot speed) reported by the vehicles traveling on the urban road network. The performance evaluation of the proposed prediction model includes a number of case studies. Each case study is conducted with different parametric settings to explain the different characteristic of the model. The results show that provided the spot speed measurements don't fluctuate significantly over the time, the proposed model is capable of predicting traffic with 54% more accuracy.
    DOI/handle
    http://dx.doi.org/10.1109/INNOVATIONS.2016.7880022
    http://hdl.handle.net/10576/17090
    Collections
    • Computer Science & Engineering [‎2484‎ items ]
    • QMIC Research [‎278‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video