• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A sentiment treebank and morphologically enriched recursive deep models for effective sentiment analysis in Arabic

    Thumbnail
    Date
    2017
    Author
    Baly, Ramy
    Hajj, Hazem
    Habash, Nizar
    Shaban, Khaled Bashir
    El-Hajj, Wassim
    Metadata
    Show full item record
    Abstract
    Accurate sentiment analysis models encode the sentiment of words and their combinations to predict the overall sentiment of a sentence. This task becomes challenging when applied to morphologically rich languages (MRL). In this article, we evaluate the use of deep learning advances, namely the Recursive Neural Tensor Networks (RNTN), for sentiment analysis in Arabic as a case study of MRLs. While Arabic may not be considered the only representative of all MRLs, the challenges faced and proposed solutions in Arabic are common to many other MRLs. We identify, illustrate, and address MRL-related challenges and show how RNTN is affected by the morphological richness and orthographic ambiguity of the Arabic language. To address the challenges with sentiment extraction from text in MRL, we propose to explore different orthographic features as well as different morphological features at multiple levels of abstraction ranging from raw words to roots. A key requirement for RNTN is the availability of a sentiment treebank; a collection of syntactic parse trees annotated for sentiment at all levels of constituency and that currently only exists in English. Therefore, our contribution also includes the creation of the first Arabic Sentiment Treebank (ARSENTB) that is morphologically and orthographically enriched. Experimental results show that, compared to the basic RNTN proposed for English, our solution achieves significant improvements up to 8% absolute at the phrase level and 10.8% absolute at the sentence level, measured by average F1 score. It also outperforms well-known classifiers including Support Vector Machines, Recursive Auto Encoders, and Long Short-Term Memory by 7.6%, 3.2%, and 1.6% absolute respectively, all models being trained with similar morphological considerations. ACM
    DOI/handle
    http://dx.doi.org/10.1145/3086576
    http://hdl.handle.net/10576/17512
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video