• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhancement of gemcitabine against pancreatic cancer by loading in mesoporous silica vesicles

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2017
    Author
    Dai, Jun-Tao
    Zhang, Yu
    Li, Heng-Chao
    Deng, Yong-Hui
    Elzatahry, Ahmed A.
    Alghamdi, Abdulaziz
    Fu, De-Liang
    Jiang, Yong-Jian
    Zhao, Dong-Yuan
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Gemcitabine (Gem) is currently the first-line chemotherapeutic drug in management of pancreatic cancer, however the therapeutic efficacy of Gem is limited due to its short half-life and poor cell membrane permeability. Here we designed mesoporous silica vesicles (MSVs) with large pore sizes as a novel drug delivery system. The MSVs were synthesized using cetyltrimethyl ammonium bromide (CTAB) as a structure-directing agent, tetraethoxysilane (TEOS) as silica source in n-hexane/water biliquid system. By virtue of the large pore size and large pore volume of the MSVs, Gem was loaded into the mesoporous of MSVs via nanocasting method. In vitro drug release experiments of gemcitabine-loaded MSVs showed an accelerating release of gemcitabine in acidic condition. These fluorescently labeled MSVs could be effectively internalized by both a human (BxPC-3) and a mouse pancreatic cancer cell lines (Pan02). Additionally, some MSVs could even reach the nuclei of the pancreatic cancer cells. Cell viability assays demonstrated that gemcitabine-loaded MSVs exhibited enhanced anticancer activity in inhibiting the proliferation of BxPC-3 and Pan02 cells compared with free Gem, while the MSVs alone showed no significant cytotoxicity. Our results indicate that our synthesized MSVs might represent a promising novel drug delivery platform for the treatment of pancreatic cancer.
    DOI/handle
    http://dx.doi.org/10.1016/j.cclet.2016.11.008
    http://hdl.handle.net/10576/17581
    Collections
    • Chemistry & Earth Sciences [‎605‎ items ]
    • Materials Science & Technology [‎315‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video