An automatic fast optimization of Quadratic Time-frequency Distribution using the hybrid genetic algorithm
| المؤلف | Abdul Awal, Md. |
| المؤلف | Boashash, B. |
| تاريخ الإتاحة | 2021-02-08T09:14:54Z |
| تاريخ النشر | 2017 |
| اسم المنشور | Signal Processing |
| المصدر | Scopus |
| الملخص | This paper presents a novel framework for a fully automatic optimization of Quadratic Time-frequency Distributions (QTFDs). This ‘black box’ approach automatically adjusts the QTFD kernel parameters by using a hybrid genetic algorithm (HGA). This results in an optimal use of QTFDs suitable for non-specialist users without requiring any additional input except for the signal itself. This optimization problem has been formulated as the minimization of the cost function of a modified energy concentration measure. The efficiency of the proposed method has been demonstrated by representing selected non-stationary signals in the time-frequency domain and testing robustness under different SNR conditions by estimating the instantaneous frequency. A fast implementation of QTFD optimization reduces computation time significantly; e.g., the computation time of a real world bat signal of 400 samples reduces to 3.5885±0.3942 s from its standard implementation (53.0910±1.445 s). |
| راعي المشروع | This work was supported in part by a Grant from the Qatar National Research Fund under its National Priorities Research Program award number NPRP 4-1303-2-517. |
| اللغة | en |
| الناشر | Elsevier B.V. |
| الموضوع | Energy concentration measure Gradient descent HGA QTFD Time-frequency optimization |
| النوع | Article |
| الصفحات | 134-142 |
| رقم المجلد | 131 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
| الملفات | الحجم | الصيغة | العرض |
|---|---|---|---|
|
لا توجد ملفات لها صلة بهذه التسجيلة. |
|||
هذه التسجيلة تظهر في المجموعات التالية
-
الأبحاث [1650 items ]

