• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Micelle Fusion-Aggregation Assembly Approach to Mesoporous Carbon Materials with Rich Active Sites for Ultrasensitive Ammonia Sensing

    Thumbnail
    Date
    2016
    Author
    Luo, Wei
    Zhao, Tao
    Li, Yuhui
    We, Jing
    Xu, Pengcheng
    Li, Xinxin
    Wang, Youwei
    Zhang, Wenqing
    Elzatahry, Ahmed A.
    Alghamdi, Abdulaziz
    Deng, Yonghui
    Wang, Lianjun
    Jiang, Wan
    Liu, Yong
    Kong, Biao
    Zhao, Dongyuan
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Nanostructured carbon materials have received considerable attention due to their special physicochemical properties. Herein, ordered mesoporous carbons (OMCs) with two-dimension (2D) hexagonal mesostructure and unique buckled large mesopores have successfully been synthesized via a micelle fusion-aggregation assembly method by using poly(ethylene oxide)-block-polystyrene (PEO-b-PS) diblock copolymers as a template and resorcinol-based phenolic resin as a carbon precursor. The obtained ordered mesoporous carbons possess unique fiber-like morphology, specific surface area of 571-880 m2/g, pore volume of 0.54 cm3/g and large mesopores (up to 36.3 nm) and high density of active sites (i.e., carboxylic groups) of 0.188/nm2. Gas sensor based on the ordered mesoporous carbons exhibits an excellent performance in sensing NH3 at a low temperature with fast response (<2 min), ultralow limit of detection (<1 ppm), and good selectivity, due to the large pore sizes, high surface area and rich active sites in the carbon pore walls. 2016 American Chemical Society.
    DOI/handle
    http://dx.doi.org/10.1021/jacs.6b07355
    http://hdl.handle.net/10576/21062
    Collections
    • Materials Science & Technology [‎316‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video