• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Encoder-decoder architecture for ultrasound IMC segmentation and CIMT prediction

    Thumbnail
    View/Open
    Aisha Al-Mohannadi _ OGS Approved Thesis.pdf (2.756Mb)
    Date
    2021-06
    Author
    Al-Mohannadi, Aisha Morshid
    Metadata
    Show full item record
    Abstract
    Cardiovascular diseases (CVDs) have shown a huge impact on the number of deaths in the world. Thus, Common Carotid Artery (CCA) segmentation and Intima-Media Thickness (IMT) measurement have been significantly implemented to perform early diagnosis of CVDs by analyzing the IMT feature. In this research, we aim to implement the convolutional autoencoder model to apply semantic segmentation for Intima-Media Complex (IMC) and calculate the cIMT measurement. The results were evaluated using F1 score, precision, recall, Sorenson Dice Coefficient, and Jaccard Index. We trained the encoder-decoder architecture using 80% of the dataset and 20% was left for testing. We were able to produce results of 79.92%, 74.23%, and 60.24% for the F1 Measure, Dice coefficient, and Jaccard Index, respectively. We also calculated the IMT thickness, which was 0.54mm. Our method showed that it is robust and fully automated compared to the state-of-the-art work
    DOI/handle
    http://hdl.handle.net/10576/21569
    Collections
    • Computing [‎103‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video