عرض بسيط للتسجيلة

المؤلفJiang, Richard
المؤلفAl-Maadeed, Somaya
المؤلفBouridane, Ahmed
المؤلفCrookes, Danny
المؤلفCelebi, M. Emre
تاريخ الإتاحة2021-09-01T10:02:41Z
تاريخ النشر2016
اسم المنشورIEEE Transactions on Information Forensics and Security
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/TIFS.2016.2555792
معرّف المصادر الموحدhttp://hdl.handle.net/10576/22350
الملخصWith the rapid development of Internet-of-Things (IoT), face scrambling has been proposed for privacy protection during IoT-targeted image/video distribution. Consequently, in these IoT applications, biometric verification needs to be carried out in the scrambled domain, presenting significant challenges in face recognition. Since face models become chaotic signals after scrambling/encryption, a typical solution is to utilize the traditional data-driven face recognition algorithms. While chaotic pattern recognition is still a challenging task, in this paper, we propose a new ensemble approach - many-kernel random discriminant analysis (MK-RDA) - to discover discriminative patterns from the chaotic signals. We also incorporate a salience-aware strategy into the proposed ensemble method to handle the chaotic facial patterns in the scrambled domain, where the random selections of features are made on semantic components via salience modeling. In our experiments, the proposed MK-RDA was tested rigorously on three human face data sets: the ORL face data set, the PIE face data set, and the PUBFIG wild face data set. The experimental results successfully demonstrate that the proposed scheme can effectively handle the chaotic signals and significantly improve the recognition accuracy, making our method a promising candidate for secure biometric verification in the emerging IoT applications. 2016 IEEE.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعBiometrics
Discriminant analysis
Internet of things
Semantics
Speech recognition
Biometric verification
Face recognition algorithms
face scrambling
Internet of Things (IOT)
many kernels
Mobile biometrics
Recognition accuracy
User privacy
Face recognition
العنوانFace Recognition in the Scrambled Domain via Salience-Aware Ensembles of Many Kernels
النوعArticle
الصفحات1807-1817
رقم العدد8
رقم المجلد11
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة