Model-based engineering for the integration of manufacturing systems with advanced analytics
Abstract
To employ data analytics effectively and efficiently on manufacturing systems, engineers and data scientists need to collaborate closely to bring their domain knowledge together. In this paper, we introduce a domain-specific modeling approach to integrate a manufacturing system model with advanced analytics, in particular neural networks, to model predictions. Our approach combines a set of meta-models and transformation rules based on the domain knowledge of manufacturing engineers and data scientists. Our approach uses a model of a manufacturing process and its associated data as inputs, and generates a trained neural network model as an output to predict a quantity of interest. This paper presents the domain-specific knowledge that the approach should employ, the formal workflow of the approach, and a milling process use case to illustrate the proposed approach. We also discuss potential extensions of the approach. IFIP International Federation for Information Processing 2016.
Collections
- Computer Science & Engineering [2402 items ]