• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2021
  • Theme 1: Energy and Environment
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2021
  • Theme 1: Energy and Environment
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Lithium capture in seawater reverse osmosis (SWRO) brine using membrane-based capacitive deionization (MCDI) system

    Thumbnail
    View/Open
    201.pdf (1.553Mb)
    Date
    2021
    Author
    Azam, Reem
    ElMakki, Tasneem
    Zavahir, Sifani
    Ahmad, Zubair
    Hijós, Gago Guillermo
    Han, Dong Suk
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Lithium-battery based industries including vehicles, electronics, fusion and thermonuclear, consume lithium rapidly, which raises the need for developing a lithium recovery system. Lithium global market consumption in 2016 was reported to be 35% in batteries manufacturing. The total content of lithium in seawater and oceans is estimated at 2.5 × 1014 kg, with an average concentration of 0.17 mg/L. Salt lakes contain 1,000–3,000 mg/L of lithium, while geothermal water up to 15 mg/L. In 2020, the US Geological Survey (USGS) reported that the total Li resource is about 80 million ton. In nature, lithium does not exist as pure metal owing to its high reactivity with water, air, and nitrogen. Commonly lithium is mined from metallic minerals from earth or brine salt marsh and used in various fields in the form of lithium carbonate (60%), lithium hydroxide (23%), lithium metal (5%), lithium chloride (3%), and butyl lithium (4%). The extraction of 1 kg of lithium needs around 5.3 kg of lithium carbonate. The amount required to produce lithium-ion batteries (LIB) for cell phones or electric cars is estimated to be 0.8 kg/s of lithium metal, which is equivalent to 25,000 tons per year. As we use this much of LIB, this will end up having significant amounts of lithium battery waste, thus recovering LIBS and using it as cathode electrode in MCDI is an excellent way with benefit. This work proposes to efficiently utilize seawater reverse osmosis (SWRO) brine as a medium to recover lithium from seawater followed by its selective capture of lithium element using SLIB as MCDI cathode electrode material. Thus, these attempts could be closer to an improved and more effective loop of lithium targeted capture-reuse system.
    URI
    https://doi.org/10.29117/quarfe.2021.0013
    DOI/handle
    http://hdl.handle.net/10576/24280
    Collections
    • Center for Advanced Materials Research [‎1497‎ items ]
    • Theme 1: Energy and Environment [‎73‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video