• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2021
  • Theme 3: Information and Communication Technologies
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2021
  • Theme 3: Information and Communication Technologies
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Vehicle identification using optimised ALPR.

    Thumbnail
    View/Open
    215.pdf (759.2Kb)
    Date
    2021
    Author
    Ottakath, Najmath
    Al-Ali, Abdulla
    Al Maadeed, Somaya
    Metadata
    Show full item record
    Abstract
    Vehicles are a common sight on the road. Tracking and monitoring suspicious vehicles for identification due to high similarity in structure and form leads to difficulties in differentiating between them. The unique identity of a vehicle, the license plate is used here for this purpose. License plate detection is considered as an object detection task. Transfer learning on pre-trained state of art object detection models is an approach, which can perform this with better accuracy in terms of mean average precision. However, setting the right hyper-parameters needs multiple experiments. In this research, an evolutionary algorithm, genetic algorithm is used, which can optimize the hyper-parameters to achieve the best accuracy for the object detection model, YOLOv5. Further, the license plate was identified using OCR. This study concluded that hyper-parameter tuning achieved high accuracy in terms of mean average precision, achieving 98.25%, compared to 80% in initial parameter set providing an automated optimization. This license plate detected can be stored in a secure location and retrieved for re-identification. A decentralized storage or a secure cloud can be used to store the license plate. The application of this is most relevant to surveillance in high security locations where suspicious vehicles must be tracked.
    URI
    https://doi.org/10.29117/quarfe.2021.0163
    DOI/handle
    http://hdl.handle.net/10576/24527
    Collections
    • Computer Science & Engineering [‎2428‎ items ]
    • Theme 3: Information and Communication Technologies [‎16‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video