• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluation of cellulose triacetate hollow fiber membrane for volume reduction of real industrial effluents through an osmotic concentration process: A pilot-scale study

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Evaluation of cellulose triacetate hollow fiber membrane for volume reduction of real industrial effluents through an osmotic concentration process A pilot-scale study.pdf (1.414Mb)
    Date
    2021-11
    Author
    M. Awad, Abdelrahman
    Jalab, Rem
    S. Nasser, Mustafa
    El-Naas, Muftah
    A. Hussein, Ibnelwaleed
    Minier-Matar, Joel
    Adham, Samer
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The current article tackles the challenge of reducing wastewater volumes generated from the gas industry. A forward osmosis (FO) pilot unit, deployed as osmotic concentration (OC) process without the draw solution (DS) recovery step, was applied as an option for volume reduction of real industrial effluents. A commercial hollow fiber (HF) FO membrane fabricated from Cellulose Triacetate (CTA) was firstly tested with synthetic feed solution (FS) to investigate the separation properties of the membrane and to identify the optimum operating conditions of the pilot unit. The pilot plant was then challenged with real industrial wastewater for an extended period of operation, primarily to assess membrane-fouling propensities and other performance parameters. Results revealed that according to the operating conditions, the CTA membrane can achieve feed recoveries between 60%–90%, at water fluxes between 2.24-1.65 L.m−2 h−1 (LMH)). The operation at 75% feed recovery was identified as the optimum condition since it showed the lowest specific solute flux (20.93 mmol L−1) at a water flux of 1.94 LMH. Outcomes of pilot testing with the real wastewater demonstrated operational stability for over 50 h of continuous operation. The pilot system recovered 75% of the wastewater feed at a stable flux trend with minimal flux decline. Water flux of 1.76 LMH was recorded along with reverse solute flux of 292 mmol h−1. The water flux was observed to decline slightly by only 5.6%, which was attributed to inorganic scaling on the membrane surface where cleaning with citric acid solution demonstrated efficacy in restoring the initial flux.
    DOI/handle
    http://dx.doi.org/10.1016/j.eti.2021.101873
    http://hdl.handle.net/10576/24820
    Collections
    • GPC Research [‎501‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video