• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of anions on the structural, morphological and dielectric properties of hydrothermally synthesized hydroxyapatite nanoparticles

    Thumbnail
    View/Open
    Sundarabharathi2019_Article_EffectOfAnionsOnTheStructuralM.pdf (3.576Mb)
    Date
    2020
    Author
    Sundarabharathi L.
    Ponnamma D.
    Parangusan H.
    Chinnaswamy M.
    Al-Maadeed M.A.A.
    Metadata
    Show full item record
    Abstract
    Synthetic nano hydroxyapatites (HA) have been considered as potential biomaterials for bone tissue engineering applications because of its excellent biological properties. The present work deals with the synthesis of HA nanoparticles from different anion source materials via autoclave assisted hydrothermal method. All the prepared HA nanoparticles were characterized by X-ray diffraction (XRD), Fourier transformation infrared spectra, field emission scanning electron microscopy, energy dispersive spectra and high resolution transmission electron microscopy. The XRD patterns reveal the pure and hexagonal phase structure with smaller crystallite size for HA obtained from various calcium salt precursors. HA particles prepared from nitrate precursors show spherical morphology with 32 nm grain size whereas those derived from the acetate, chloride and egg shell precursors respectively show needle-like, irregular and oval morphology. The effect of different anions on the dielectric properties and alternating conductivity of HA is investigated, as a polarized surface can trigger biological reactions. For the particles obtained from nitrate, acetate, chloride and egg shell precursors respectively give dielectric constant (εʹ) values of 9.96, 13.22, 9.92 and 10.86 at 5 MHz. The εʹ and dielectric loss (εʹʹ) values for the HA nanoparticles decrease with increase in the applied frequency as well. The alternating current conductivity values confirm that the as-synthesized HA samples exhibit insulating behavior. In short this article provides the various applicability of HA particles in optoelectronics and drug delivery.
    DOI/handle
    http://dx.doi.org/10.1007/s42452-019-1807-3
    http://hdl.handle.net/10576/27461
    Collections
    • Center for Advanced Materials Research [‎1486‎ items ]
    • Materials Science & Technology [‎316‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video