• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigation and performance analysis of solar still with energy storage materials: An energy- exergy efficiency analysis

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Investigation and performance analysis of solar still with energy storage materials An energy- exergy efficiency analysis.pdf (4.694Mb)
    Date
    2022
    Author
    Mevada, Dinesh
    Panchal, Hitesh
    Ahmadein, M.
    Zayed, Mohamed E.
    Alsaleh, Naser A.
    Djuansjah, Joy
    Moustafa, Essam B.
    Elsheikh, Ammar H.
    Sadasivuni, Kishor Kumar
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Researchers have attempted different Energy storage materials (ESM) in solar stills (SS) to improve distillate yield. In this experimental work, an attempt was made to increase the distillate yield & efficiency of SS, using good absorbing and heat transfer capacity of ESM. A comparison was made between a conventional solar still (CSS) and a solar still with energy storage materials (SSWESM) in this experiment. Different energy storage materials like black color glass ball (BCGB), black granite (BG) and white marble stone (WMS) were used in equal quantity during experimental work. CSS and SSWESM had daily distillate yield of 1.4 kg/m2 and 2.5 kg/m2, respectively. The ESM boosts water evaporation during the day and releases heat at night, resulting in a higher distillate yield than CSS. Meanwhile, the exergy efficiency (?exe) of CSS and SSWESM were 4.99% and 12.55% respectively. Also the SSWESM gives 72.6% more daily efficiency (?) than CSS.
    DOI/handle
    http://dx.doi.org/10.1016/j.csite.2021.101687
    http://hdl.handle.net/10576/28543
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video