• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Using thermochromic ink for medical simulations

    Thumbnail
    View/Open
    qmj.2017.swacelso.63.pdf (272.6Kb)
    Date
    2017
    Author
    Alsalemi, Abdullah
    Aldisi, Mohammed
    Alhomsi, Yahya
    Ahmed, Ibrahim
    Bensaali, Faycal
    Alinier, Guillaume
    Amira, Abbes
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Background: In medical simulation and training, blood is used to exhibit its different behaviors in context. In some cases, blood color differential is an imperative visual effect to ensure high-fidelity training and practical understanding. High simulation realism is usually achieved by using animal or artificial blood (which mimics some biological features of blood), which has high cost, requires disposable equipment such as oxygenators, and entails contamination or infection risks. Methods: A novel method for blood simulation is introduced. Using the thermal properties of thermochromic ink, its color can be altered by adjustment of temperature. 1 The unique red color of blood can be mimicked to a high fidelity using a custom hue of thermochromic ink. Then, by adjusting its temperature, realistic dark and bright red can be employed to simulate the low and high oxygen concentrations of blood, respectively. Although thermochromic ink currently does not imitate other blood properties such as viscosity and clotting, it has superior merits when color change simulation is a paramount priority. The major advantages of the proposed solution are reusability and cost. Thermochromic ink can be used for multiple simulations without any noticeable change in quality. It also costs significantly less than using actual or artificial blood. Results: Testing results of the proposed solution in extracorporeal membrane oxygenation (ECMO) simulation has proven its efficacy as a practical solution for medical simulations (see Figure 1). To prevent membrane occlusion because of the thermochromic ink, the latter needs to be pierced. In addition to ECMO simulation, other medical applications are being considered. Conclusions: The use of thermochromic ink in medical training provides reproducible color change simulation features of blood while maintaining significantly lower equipment costs and contamination risks as all circuit components can be reused.
    URI
    https://doi.org/10.5339/qmj.2017.swacelso.63
    DOI/handle
    http://hdl.handle.net/10576/28975
    Collections
    • Electrical Engineering [‎2840‎ items ]
    • Information Intelligence [‎98‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video