• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cybersecurity for next generation healthcare in Qatar

    Thumbnail
    View/Open
    jemtac.2021.qhc.41.pdf (247.9Kb)
    Date
    2021
    Author
    Zubair, Mohammad
    Unal, Devrim
    Al-Ali, Abdulla
    Reimann, Thomas
    Alinier, Guillaume
    Metadata
    Show full item record
    Abstract
    Background: IoMT (Internet of Medical Things) devices (often referred to IoMT domain) have the potential to quickly diagnose and monitor patients outside the hospital by transmitting information through the cloud domain using wireless communication to remotely located medical professionals (user domain). Figure 1 shows the proposed IoMT framework designed to improve the privacy and security of the healthcare infrastructure. Methods: The framework consists of four modules: 1. Intrusion Detection System (IDS) 1 using deep learning (DL) to identify bluetooth-based Denial-of-Service (DoS)-attacks on IoMT devices and is deployed on edge-computing to secure communication between IoMT and edge. 2. IDS 1 is backed up with identity-based cryptography to encrypt the data and communication path. 3. Besides the identity-management system (to authenticate users), it is modeled with aliveness detection using face authentication techniques at the edge to guarantee the confidentiality, integrity, and availability (CIA) of the framework. 4. At the cloud level, another IDS 2 using MUSE (Merged-Hierarchical-Deep-Learning-System-with-Layer-Reuse) is proposed to protect the system against Man-In-The-Middle attacks, while the data is transferred between IoMT-EDGE-CLOUD. Results: These four modules are developed independently by precisely analyzing dependencies. The performance of IDS 3 in terms of precision is 99% and for the identity-management system, the time required to encrypt and decrypt 256-bit key is 66 milliseconds and 220 milliseconds respectively. The true positive rate is 90.1%, which suggests real-time detection and authentication rate. IDS (2) using MUSE (12-layer) the accuracy is >95%, and it consumes 15.7% to 27.63% less time to train than the smaller four-layer model. Conclusion: Our designed models suit edge devices and cloud-based cybersecurity systems and support the fast diagnosis and care required by critically ill patients in the community.
    URI
    https://doi.org/10.5339/jemtac.2021.qhc.41
    DOI/handle
    http://hdl.handle.net/10576/28978
    Collections
    • Electrical Engineering [‎2840‎ items ]
    • Information Intelligence [‎98‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video