• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Photodynamic therapy for hair removal

    Thumbnail
    View/Open
    connect.2013.16.pdf (748.3Kb)
    Date
    2013
    Author
    li, Mohamed H.M.
    Hashem, Mohamed M.
    Zaher, Amr
    Korraa, Soheir
    Hamouda, Farouk
    Ali, Carmen M.
    Al-Saad, Khalid A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Background: Unwanted hair is one of the most common medical problems affecting women of reproductive age inducing a lot of psychological stress and threatening their femininity and self-esteem. Old methods of removing unwanted hair include shaving, waxing, chemical depilation, and electrolysis, all of which have temporary results. However laser-assisted hair removal is the most efficient method of long-term hair removal currently available. It is desirable to develop a reduced cost photodynamic therapy (PDT) system whose properties should include high efficiency and low side-effects. Method: Mice skin tissues were used in this study and divided into six groups such as controls, free methylene blue (MB) incubation, liposome methylene blue (MB) incubation, laser without methylene blue (MB), free methylene blue (MB) for 3 and 4 h and laser, liposome methylene blue (MB) for 3 h and laser. Methylene blue (MB) was applied to wax epilated areas. The areas were irradiated with CW He-Ne laser system that emits orange-red light with wavelength 632.8 nm and 10 mW at energy density of 5 J/cm2 for 10 min. The UV-visible absorption spectrum was collected by Cary spectrophotometer. Results: Methylene blue (MB) is selectively absorbed by actively growing hair follicles due to its cationic property. Methylene blue (MB) untreated sections showed that hair follicle and sebaceous gland are intact and there is no change due to the laser exposure. Free methylene blue (MB) sections incubated for 3 h showed that He:Ne laser induced destruction in hair follicles, leaving an intact epidermis. Treated section with free methylene blue (MB) for 4 h showed degeneration and necrosis in hair follicle, leaving an intact epidermis. Liposomal methylene blue (MB) sections incubated for 3 h showed He:Ne laser induced destruction in hair follicles with intradermal leucocytic infiltration. Conclusion: Low power CW He:Ne laser and methylene blue (MB) offered a successful PDT system in selectively damaging hair follicles, leaving an intact epidermis. The current PDT system provides better outcome than hair destruction through laser heat transfer procedures and laser-mediated hair removal, due to complete destruction of hair follicles.
    URI
    https://doi.org/10.5339/connect.2013.16
    DOI/handle
    http://hdl.handle.net/10576/29213
    Collections
    • Chemistry & Earth Sciences [‎601‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video