• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhancement Of Water-oil Separation By Electroclescence

    Thumbnail
    View/Open
    qfarc.2014.EEPP0495.pdf (98.92Kb)
    Date
    2014
    Author
    Vivacqua, Vincenzino
    Mhatre, Sameer
    Ghadiri, Mojtaba
    Abdullah, Aboubakr
    Hassanpour, Ali
    Al-marri, Mohammed
    Azzopardi, Barry
    Hewakandamby, Buddhika
    Kermani, Bijan
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Dispersed water droplets in organic liquids are commonly encountered in the oil, chemical and biochemical industries. A typical example is the separation of dispersed water drops in crude oil, in order to prevent catalyst fouling, viscosity and volume increase, and to meet quality specifications of the crude oil. Water drops can be removed from a continuous oil phase by various techniques, such as chemical demulsification, gravity or centrifugal separation, pH adjustment, filtration, heat treatment, membrane separation and electrostatic-enhanced coalescence. Compared to other methods, electrical demulsification is considered to be superior in terms of energy efficiency. The electrostatic effects arise from the much higher values of dielectric permittivity and conductivity of water in comparison to oil. However, the mechanism of electrocoalescence is still not fully understood and most of the conventional electro-separators are rather bulky. There is, therefore, a compelling need to optimize the design and operation of these separators by means of a better fundamental understanding of the underlying physics. This study aims at investigating the coalescence behaviour of water droplets in sunflower oil when the aqueous phase is present in the form of a chain of droplets. Chains easily form in an emulsion, since droplets tend to align themselves with the direction of the electric field. A pair of ladder-wise electrodes was implemented to set up an electric field almost parallel to the flow direction of the droplets. This design ensures that adjacent droplets in a chain experience the maximum attractive force and does not significantly disturb the hydrodynamics of the continuous phase. The effect of the electric field strength, frequency and waveform on the process performance has been investigated. Both constant and pulsed dc fields have been applied to the dispersion. Sinusoidal, sawtooth and square waves have been employed as pulsed dc waveforms. Droplet size distributions at the outlet of the device were measured by image analysis. The outcomes of the research suggest that it is possible to find a combination of electrical field intensity, frequency and waveform to maximize the separation efficiency.
    URI
    https://doi.org/10.5339/qfarc.2014.EEPP0495
    DOI/handle
    http://hdl.handle.net/10576/29634
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video