• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Application of genetic algorithm in selection of dominant input variables in sensor fault diagnosis of nonlinear systems

    Thumbnail
    Date
    2013
    Author
    Elkoujok, M.
    Benammar, M.
    Meskin, Nader
    Al-Naemi, M.
    Langari, R.
    Metadata
    Show full item record
    Abstract
    Industrial processes rely heavily on information provided by sensors. Reliability of sensor data is vital to assure an acceptable performance of these complex and nonlinear processes. In this paper, the analytical redundancy approach has been adopted to detect and isolate sensor faults in which the model of a given nonlinear dynamical system is identified based on the available input/output time profile. Towards this goal, an evolving Takagi-Sugeno approach as a universal approximator is used to represent a nonlinear mapping between the past values of input/output data and the current value of the output data. However, the main challenge is the selection of the appropriate set of past values that can lead to the best estimate of the output In this paper, a genetic algorithm is utilized as a powerful data-driven tool for finding the best set of input-output past values. The proposed approach is applied to the problem of sensor fault detection and isolation in a Continuous-Flow Stirred-Tank Reactor. Simulation results demonstrate and validate the performance capabilities of the proposed approach. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ICPHM.2013.6621411
    http://hdl.handle.net/10576/29822
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video