• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multiple-model based sensor fault diagnosis using hybrid kalman filter approach for nonlinear gas turbine engines

    Thumbnail
    Date
    2013
    Author
    Pourbabaee, B.
    Meskin, Nader
    Khorasani, K.
    Metadata
    Show full item record
    Abstract
    In this paper, an efficient sensor fault detection and isolation (FDI) strategy is proposed based on multiple-model (MM) approach. The scheme is composed of hybrid kalman filters (HKF) by integrating a nonlinear gas turbine engine model that represents the operational engine model with a number of piecewise linear (PWL) models to estimate sensor outputs. The proposed FDI scheme is capable of detecting and isolating permanent sensor bias faults during the entire operational regime of the engine by interpolating the PWL models using a Bayesian approach. Another important aspect of our proposed FDI strategy is its effectiveness within the engine life cycle by periodically updating the model to the degraded health parameters, that one estimated by means of an off-line trend monitoring system that is based on post flight data. The simulation results demonstrate the effectiveness of our proposed online sensor fault diagnosis scheme as well as the robustness of our technique with respect to the engine health parameters degradations. 2013 AACC American Automatic Control Council.
    DOI/handle
    http://hdl.handle.net/10576/29825
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video