عرض بسيط للتسجيلة

المؤلفJouhari M.
المؤلفAl-Ali A.K.
المؤلفBaccour E.
المؤلفMohamed A.
المؤلفErbad A.
المؤلفGuizani M.
المؤلفHamdi M.
تاريخ الإتاحة2022-04-21T08:58:20Z
تاريخ النشر2022
اسم المنشورIEEE Internet of Things Journal
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/JIOT.2021.3079164
معرّف المصادر الموحدhttp://hdl.handle.net/10576/30046
الملخصUnmanned aerial vehicles (UAVs) have attracted great interest in the last few years owing to their ability to cover large areas and access difficult and hazardous target zones, which is not the case of traditional systems relying on direct observations obtained from fixed cameras and sensors. Furthermore, thanks to the advancements in computer vision and machine learning, UAVs are being adopted for a broad range of solutions and applications. However, deep neural networks (DNNs) are progressing toward deeper and complex models that prevent them from being executed onboard. In this article, we propose a DNN distribution methodology within UAVs to enable data classification in resource-constrained devices and avoid extra delays introduced by the server-based solutions due to data communication over air-to-ground links. The proposed method is formulated as an optimization problem that aims to minimize the latency between data collection and decision-making while considering the mobility model and the resource constraints of the UAVs as part of the air-to-air communication. We also introduce the mobility prediction to adapt our system to the dynamics of UAVs and the network variation. The simulation conducted to evaluate the performance and benchmark the proposed methods, namely, optimal UAV-based layer distribution (OULD) and OULD with mobility prediction (OULD-MP), was run in an HPC cluster. The obtained results show that our optimization solution outperforms the existing and heuristic-based approaches. 2014 IEEE.
راعي المشروعQatar University
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعAntennas
Benchmarking
Clustering algorithms
Decision making
Deep neural networks
Unmanned aerial vehicles (UAV)
Design and optimization
Mobility predictions
Optimization problems
Optimization solution
Resource Constraint
Resourceconstrained devices
Surveillance systems
Traditional systems
Optimization
العنوانDistributed CNN Inference on Resource-Constrained UAVs for Surveillance Systems: Design and Optimization
النوعArticle
الصفحات1227-1242
رقم العدد2
رقم المجلد9
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة