عرض بسيط للتسجيلة

المؤلفTabassum A.
المؤلفErbad A.
المؤلفMohamed A.
المؤلفGuizani M.
تاريخ الإتاحة2022-04-21T08:58:23Z
تاريخ النشر2021
اسم المنشورIEEE Access
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/ACCESS.2021.3051530
معرّف المصادر الموحدhttp://hdl.handle.net/10576/30077
الملخصExisting techniques for incremental learning are computationally expensive and produce duplicate features leading to higher false positive and true negative rates. We propose a novel privacy-preserving intrusion detection pipeline for distributed incremental learning. Our pre-processing technique eliminates redundancies and selects unique features by following innovative extraction techniques. We use autoencoders with non-negativity constraints, which help us extract less redundant features. More importantly, the distributed intrusion detection model reduces the burden on the edge classifier and distributes the load among IoT and edge devices. Theoretical analysis and numerical experiments have shown lower space and time costs than state of the art techniques, with comparable classification accuracy. Extensive experiments with standard data sets and real-time streaming IoT traffic give encouraging results. 2013 IEEE.
راعي المشروعQatar University
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعIntrusion detection
Learning systems
Network security
Privacy by design
Classification accuracy
Distributed intrusion detection
Extraction techniques
Incremental learning
Non-negativity constraints
Numerical experiments
State-of-the-art techniques
True negative rates
Internet of things
العنوانPrivacy-Preserving Distributed IDS Using Incremental Learning for IoT Health Systems
النوعArticle
الصفحات14271-14283
رقم المجلد9
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة