QoE-Aware Resource Allocation for Crowdsourced Live Streaming: A Machine Learning Approach
المؤلف | Haouari F. |
المؤلف | Baccour E. |
المؤلف | Erbad A. |
المؤلف | Mohamed A. |
المؤلف | Guizani M. |
تاريخ الإتاحة | 2022-04-21T08:58:27Z |
تاريخ النشر | 2019 |
اسم المنشور | IEEE International Conference on Communications |
المصدر | Scopus |
المعرّف | http://dx.doi.org/10.1109/ICC.2019.8761591 |
الملخص | Driven by the tremendous technological advancement of personal devices and the prevalence of wireless mobile network accesses, the world has witnessed an explosion in crowdsourced live streaming. Ensuring a better viewers quality of experience (QoE) is the key to maximize the audiences number and increase streaming providers' profits. This can be achieved by advocating a geo-distributed cloud infrastructure to allocate the multimedia resources as close as possible to viewers, in order to minimize the access delay and video stalls. Moreover, allocating the exact needed resources beforehand avoids over-provisioning, which may lead to significant costs by the service providers. In the contrary, under-provisioning might cause significant delays to the viewers. In this paper, we introduce a prediction driven resource allocation framework, to maximize the QoE of viewers and minimize the resource allocation cost. First, by exploiting the viewers locations available in our unique dataset, we implement a machine learning model to predict the viewers number near each geo-distributed cloud site. Second, based on the predicted results that showed to be close to the actual values, we formulate an optimization problem to proactively allocate resources at the viewers proximity. Additionally, we will present a trade-off between the video access delay and the cost of resource allocation. 2019 IEEE. |
راعي المشروع | Qatar Foundation;Qatar National Research Fund |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | Cloud computing Crowdsourcing Economic and social effects Learning systems Machine learning Quality of service Resource allocation Wireless networks Live video Machine learning approaches Machine learning models Multimedia resources Optimization problems Quality of experience (QoE) Technological advancement Wireless mobile networks Multimedia systems |
النوع | Conference Paper |
رقم المجلد | 2019-May |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]