• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Earth Science Cluster
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Earth Science Cluster
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Comprehensive Literature Review on Cadmium (Cd) Status in the Soil Environment and Its Immobilization by Biochar-Based Materials

    Thumbnail
    View/Open
    A Comprehensive Literature Review on Cadmium (Cd) Status in the Soil Environment and Its Immobilization by Biochar-Based Materials.pdf (5.612Mb)
    Date
    2022-02-07
    Author
    Ur Rahim, Hafeez
    Akbar, Waqas Ali
    Alatalo, Juha M.
    Metadata
    Show full item record
    Abstract
    Cadmium, Cd(II) pollution of soils is a serious environmental and agricultural issue, posing a threat to crop production, environmental quality, food safety, and human health. Therefore, immobilization of Cd(II) in soils is crucial. Biochar-based materials are receiving significant attention as Cd(II) immobilizers, due to their multifunctional surface properties. The remediation/immobilization mechanisms involved are, mainly, surface complexation, chemical reduction, precipitation, ion exchange, π–π interactions, hydrogen bonding, and adsorption. These mechanisms are mostly dependent on biochar surface pore size, oxygen-containing functional groups, pyrolysis temperature used in biochar preparation, biochar feedstock, and soil characteristics. So far, various pristine and modified biochar substrates have been used to remediate heavy metal-contaminated soils. Therefore, in this review paper, we briefly summarize the chemical forms, release sources, and maximum permissible limits of Cd(II) in soil. We also summarize recent scientific findings on the performance of biochar substrates in Cd(II)-contaminated soils to minimize Cd(II) mobility, bioavailability, and potential accumulation in crops. Finally, we identify challenges associated with the use of biochar and suggest areas for future research. The review presents an overview of the knowledge of biochar as a promising amendment for the decontamination of Cd(II)-polluted soils.
    DOI/handle
    http://dx.doi.org/10.3390/agronomy12040877
    http://hdl.handle.net/10576/30250
    Collections
    • Earth Science Cluster [‎216‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video