• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A theoretical study of gas adsorption on calcite for CO2 enhanced natural gas recovery

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Carchini G.
    Hussein I.
    Al-Marri M.J.
    Shawabkeh R.
    Mahmoud M.
    Aparicio S.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The adsorption of gas molecules (CO2, CH4, H2O, H2S and N2) on calcite (104) has been studied by means of Density Functional Theory for molecular characterization of Enhanced Gas Recovery (EGR) CO2 injection. Results show that the geometry of both the surface and gas were not affected by the adsorption, highlighting the physisorption nature of the process. On average, water adsorbs the strongest followed by hydrogen sulfide, because of hydrogen bonding, and carbon dioxide comes next. Finally, nitrogen adsorption is stronger in average when compared to methane, with a certain degree of complexity. In general, all the configurations’ energies can be found in a range of less than 0.4 eV for each adsorbate. Nevertheless, the larger affinity of CO2 confirms the suitability of CO2 injection for methane release in EGR operations. The stronger water adsorption compared to carbon dioxide (−0.91 eV versus −0.38 eV) gives a quantitative estimate of the impact of water as impurity. Further investigations need to address the issue of water impurity, since this aspect could dramatically hinder the application of the whole technique. Coverage studies of methane and carbon dioxide further highlight the affinity of the latter to the carbonate surface.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075365224&doi=10.1016%2fj.apsusc.2019.144575&partnerID=40&md5=b604a401ccebadb5f16677a960a620fe
    DOI/handle
    http://dx.doi.org/10.1016/j.apsusc.2019.144575
    http://hdl.handle.net/10576/30413
    Collections
    • Chemical Engineering [‎1194‎ items ]
    • GPC Research [‎501‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video