• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Structural Damage Detection in Civil Engineering with Machine Learning: Current State of the Art

    Thumbnail
    Date
    2022
    Author
    Avci O.
    Abdeljaber O.
    Kiranyaz, Mustafa Serkan
    Metadata
    Show full item record
    Abstract
    This paper presents a brief overview of vibration-based structural damage detection studies that are based on machine learning (ML) in civil engineering structures. The review includes both parametric and nonparametric applications of ML accompanied with analytical and/or experimental studies. While the ML tools help the system learn from the data fed into, the computer enhances the task with the learned information without any programming on how to process the relevant data. As such, the performance level of ML-based damage identification methodologies depends on the feature extraction and classification steps, especially on the classifier choices for which the characteristic nature of the acceleration signals is recorded in a feasible way. Yet, there are several issues to be discussed about the existing ML procedures for both parametric and nonparametric applications, which are presented in this paper.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85118193312&doi=10.1007%2f978-3-030-75988-9_17&partnerID=40&md5=54b7815adfb1a14bf6d0473b14249d2f
    DOI/handle
    http://dx.doi.org/10.1007/978-3-030-75988-9_17
    http://hdl.handle.net/10576/30582
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      A New Benchmark Problem for Structural Damage Detection: Bolt Loosening Tests on a Large-Scale Laboratory Structure 

      Avci O.; Abdeljaber O.; Kiranyaz, Mustafa Serkan; Hussein M.; Gabbouj M.; Inman D.... more authors ... less authors ( Springer , 2022 , Conference)
      Monitoring the structural performance of engineering structures has always been pertinent for maintaining structural health and assessing the life cycle of structures. Structural Health Monitoring (SHM) and Structural ...
    • Thumbnail

      Self-organizing maps for structural damage detection: A novel unsupervised vibration-based algorithm 

      Avci, Onur; Abdeljaber, Osama ( American Society of Civil Engineers (ASCE) , 2016 , Article)
      The study presented in this paper is arguably the first study to use a self-organizing map (SOM) for global structural damage detection. A novel unsupervised vibration-based damage detection algorithm is introduced using ...
    • Thumbnail

      A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications 

      Avci O.; Abdeljaber O.; Kiranyaz, Mustafa Serkan; Hussein M.; Gabbouj M.; Inman D.J.... more authors ... less authors ( Academic Press , 2021 , Article Review)
      Monitoring structural damage is extremely important for sustaining and preserving the service life of civil structures. While successful monitoring provides resolute and staunch information on the health, serviceability, ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video