• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhanced tensile strength, fracture toughness and piezoresistive performances of CNT based epoxy nanocomposites using toroidal stirring assisted ultra-sonication

    View/Open
    Enhanced tensile strength, fracture toughness and.pdf (2.944Mb)
    Date
    2021-01-01
    Author
    Esmaeili, A.
    Sbarufatti, C.
    Youssef, K.
    Jiménez-Suárez, A.
    Ureña, A.
    Hamouda, A. M.S.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The importance of proper CNT dispersion is still the main challenge in CNTs doped epoxy nanocomposites. Therefore, this study was aimed to investigate the effect of toroidal stirring-assisted sonication on final mechanical, electrical and electromechanical properties of the nanocomposites. Two different samples were produced i.e. one with just sonication (M1 batch) and the other was produced using a combination of sonication and high toroidal stirring in an iterative approach (M2 batch). While piezoresistivity performance of the CNT based nanocomposites were mainly investigated in the literature for tensile mode and less attempts were conducted in presence of a pre-crack, both tensile and fracture tests were performed in this study to measure mechanical and electromechanical properties of the nanocomposites. SEM and FESEM were used for the microstructural characterizations. Results showed that M2 batch resulted in a better mechanical, electrical, and piezoresistivity performance than the M1 batch resulting from a better CNT dispersion and less amount of voids in the former compared to the latter. In fact, tensile strength and fracture toughness was increased by 70% and 17%, respectively for M2 batch with respect to M1 batch. Moreover, piezoresistive-sensitivity of the M2 batch increased 14%, compared to M1 batch. Finally, different trends in piezoresistivity was revealed in the fracture test before the occurrence of macroscopic damage, attributed to state of CNT dispersion and manifesting as a negative and positive trend for the M2 and M1 batches, respectively.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85111629351&origin=inward
    DOI/handle
    http://dx.doi.org/10.1080/15376494.2021.1958397
    http://hdl.handle.net/10576/30809
    Collections
    • Materials Science & Technology [‎315‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video