• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Transportation and Traffic Safety Center
  • Traffic Safety
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Transportation and Traffic Safety Center
  • Traffic Safety
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ANN-Based traffic volume prediction models in response to COVID-19 imposed measures

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022-06-30
    Author
    Mohammad Shareef, Ghanim
    Muley, Deepti
    Kharbeche, Mohamed
    Metadata
    Show full item record
    Abstract
    Many countries around the globe have imposed several response measures to suppress the rapid spread of the COVID-19 pandemic since the beginning of 2020. These measures have impacted routine daily activities, along with their impact on economy, education, social and recreational activities, and domestic and international travels. Intuitively, the different imposed policies and measures have indirect impacts on urban traffic mobility. As a result of those imposed measures and policies, urban traffic flows have changed. However, those impacts are neither measured nor quantified. Therefore, estimating the impact of these combined yet different policies and measures on urban traffic flows is a challenging task. This paper demonstrates the development of an artificial neural networks (ANN) model which correlates the impact of the imposed response measure and other factors on urban traffic flows. The results show that the adopted ANN model is capable of mapping the complex relationship between traffic flows and the response measures with a high level of accuracy and good performance. The predicted values are closed to the observed ones. They are clustered around the regression line, with a coefficient of determination (R2) of 0.9761. Furthermore, the developed model can be generalized to determine the anticipated demand levels resulted from imposing any of the response measures in the post-pandemic era. This model can be used to manage traffic during mega-events. It can be also utilized for disaster or emergency situations, where traffic flow estimates are highly required for operational and planning purposes.
    URI
    https://www.sciencedirect.com/science/article/pii/S2210670722001573
    DOI/handle
    http://dx.doi.org/10.1016/j.scs.2022.103830
    http://hdl.handle.net/10576/30869
    Collections
    • COVID-19 Research [‎848‎ items ]
    • Traffic Safety [‎163‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video