Off-line writer identification using multi-scale local binary patterns and SR-KDA
المؤلف | Khalifa E. |
المؤلف | Al-Maadeed, Somaya |
المؤلف | Tahir M.A. |
المؤلف | Khelifi F. |
المؤلف | Bouridane A. |
تاريخ الإتاحة | 2022-05-19T10:23:14Z |
تاريخ النشر | 2013 |
اسم المنشور | 2013 25th International Conference on Microelectronics, ICM 2013 |
المصدر | Scopus |
المعرّف | http://dx.doi.org/10.1109/ICM.2013.6734983 |
الملخص | Writer identification is becoming an increasingly important research topic especially in forensic and biometric applications. This paper presents a novel method for performing offline write identification by using multi-scale local binary patterns histogram (MLBPH) features. The proposed feature (MLBPH) when combined with edge-hinge based feature achieves a top 1 recognition rate of 92% on the benchmark IAM English handwriting dataset, outperforming current state of the art features. Further, kernel discriminant analysis using spectral regression (SR-KDA) is introduced as dimensionality reduction technique to avoid the overfitting problem associated with using multi-scale data. |
اللغة | en |
الناشر | IEEE |
الموضوع | Biometric applications Dimensionality reduction techniques Kernel discriminant analysis Local binary patterns Multi-scale datum Over fitting problem Spectral regressions Writer identification Biometrics Microelectronics |
النوع | Conference |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2426 items ]