• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Active agents loaded extracellular matrix mimetic electrospun membranes for wound healing applications

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S1773224721001805-main.pdf (8.696Mb)
    Date
    2021
    Author
    Kalva S.N.
    Augustine R.
    Al Mamun A.
    Dalvi Y.B.
    Vijay N.
    Hasan, Anwarul
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Achieving the healing of chronic diabetic ulcers, burn wounds and large traumatic wounds is a major clinical challenge. A variety of approaches have been undertaken to generate skin substitutes, wound healing patches or dressings with adequate barrier properties, stability, degradation, exudate uptake capacity, antimicrobial properties, vascularization potential and wound-healing capacity. Recent approaches to support chronic wound healing focus on the development of a natural extracellular matrix (ECM) mimetic microenvironment in the wound bed. Submicron fiber-based membranes have been shown to successfully mimic many features of the ECM such as its architecture, mechanical properties, composition, and function. Electrospinning is one of the most successful methods for producing porous submicron fiber based wound coverage matrices for promoting wound healing and achieving tissue regeneration. The ECM mimetic properties of the membranes have also been improved with the use of recently developed methods such as coaxial electrospinning with other polymers. Various active components such as therapeutic agents, nanoparticles and biomolecules can be incorporated in electrospun fibers to improve ECM mimetic features and provide additional advantages like antibacterial and angiogenic properties. This article comprehensively overviews the applications of ECM mimetic electrospun membranes as structural and functional components in wound healing and the potential challenges imposed by them in a clinical point of view.
    DOI/handle
    http://hdl.handle.net/10576/31268
    http://dx.doi.org/10.1016/j.jddst.2021.102500
    Collections
    • Mechanical & Industrial Engineering [‎1472‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video