• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Highly stable hybrid single-micelle: a universal nanocarrier for hydrophobic bioimaging agents

    Thumbnail
    Date
    2022
    Author
    Zhou, Qiaoyu
    Zhao, Tiancong
    Liu, Mengli
    Yin, Dongrui
    Liu, Minchao
    Elzatahry, Ahmed A.
    Zhang, Fan
    Zhao, Dongyuan
    Li, Xiaomin
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    As the first-line technology, micelles play a pivotal role in in vivo delivery of theranostic agents because of their high biocompatibility and universality. However, in complex physiological environments (extreme dilution, pH, and oxidation or reduction, etc.), they generally suffer from structural instability and insufficient protection for encapsulated cargos. It is urgent to reinforce the structural stability of the micelles at the single-micelle level. By using the FDA-approved Pluronic F127 surfactants and indocyanine green (ICG) bioimaging agents as model, herein, we propose the silane-crosslinking assisted strategy to reinforce the structural stability of the single-micelle. Different from the traditional silane hydrolysis under the harsh experimental conditions (acidic, alkaline, and high temperature hydrothermal, etc.), the ICG loaded F127@SiO2 hybrid single-micelles (ICG@H-micelles) with controllable sizes (15?35 nm) are synthesized at neutral pH and room temperature, which is crucial for the maintenance of the physicochemical properties of the encapsulated cargos. With the ultra-thin SiO2 (< 5 nm) at hydrophilic layer of the single-micelle, the structural and fluorescence stability of ICG@H-micelles are much higher than the conventional micelle (ICG@micelles) in the simulated physiological environments of dilution, oxidation or reduction, and low pH. Because of the high structural and fluorescence stability, the ICG@H-micelles also exhibit longer duration time in the tumor and gastrointestinal tract bioimaging.[Figure not available: see fulltext.] 2022, Tsinghua University Press.
    DOI/handle
    http://dx.doi.org/10.1007/s12274-022-4083-2
    http://hdl.handle.net/10576/31348
    Collections
    • Materials Science & Technology [‎315‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video