• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Designed electrochemical sensor based on metallocene modified conducting polymer composite for effective determination of tramadol in real samples

    No Thumbnail [120x130]
    Date
    2021
    Author
    Atta, Nada F.
    Elzatahry, Ahmed
    Abdo, Ghada G.
    Hassan, Samar H.
    Metadata
    Show full item record
    Abstract
    A novel composite for the electrochemical sensing of tramadol (Tr) was developed by the inclusion of a metallocene mediator between two layers of conducting poly(3,4-ethylenedioxythiophene) (PEDOT) polymer, in the presence of sodium dodecyl sulfate (SDS), i.e., P/mediator/P. . .SDS. Three charge transfer mediators were evaluated: ferrocene carboxylic acid (FC1), ferrocene (FC2), and cobaltocene (CC) for Tr electrocatalytic oxidation. The FC1 charge mediator showed a relatively higher current response that was assisted by the electronic conduction of the polymer film. Moreover, SDS presented a great impact, resulting in the enhancement of the preconcentration and (or) accumulation of Tr ions at the interface, leading to faster electron transfer. In addition, the practical application of the proposed FC1 composite for the determination of Tr in real urine and serum samples was successfully achieved with adequate recovery results. Very low detection limits of 18.6 nM and 16 nM in the linear dynamic ranges of 7?300 ?M and 5?280 ?M, respectively, were obtained at the proposed sensor. Furthermore, the simultaneous determination of Tr with common interfering species, paracetamol (APAP), morphine (MO), dopamine (DA), ascorbic acid (AA) and uric acid (UA), proved excellent, with good resolution and large potential peaks separation. The excellent characteristics of the proposed composite such as high reproducibility, good sensitivity, selectivity, anti-interference ability, and good stability enhanced its application for determination of other narcotic drugs.
    DOI/handle
    http://dx.doi.org/10.1139/cjc-2020-0199
    http://hdl.handle.net/10576/31355
    Collections
    • Materials Science & Technology [‎315‎ items ]
    • Pharmacy Research [‎1389‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video

    NoThumbnail