• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dry ice-mediated rational synthesis of edge-carboxylated crumpled graphene nanosheets for selective and prompt hydrolysis of cellulose and eucalyptus lignocellulose under ambient reaction conditions

    Thumbnail
    Date
    2020
    Author
    Abdu, Hassan Idris
    Eid, Kamel
    Abdullah, Aboubakr M.
    Sliem, Mostafa H.
    Elzatahry, Ahmed
    Lu, Xiaoquan
    Eid, Kamel
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Edge-selectively carboxylated graphene (ECG) crumpled nanosheets are of great importance in potential applications; however, their catalytic activity towards biomass hydrolysis is not yet highlighted. Herein, we rationally designed two-dimensional ECG nanosheets with tunable COOH content via the ball-milling of graphite with dry ice as an efficient catalyst for selective hydrolysis of cellulose and lignocellulose. The fabrication method is simple, one pot, productive (up to gram-scale), green (no hazardous oxidizing agents), and allows selective edge functionalization without damaging the graphitic basal plane. The as-formed ECG are water-dispersable and self-exfoliated two-dimensional crumpled nanosheets with a high surface area (94.1 m2 g−1) and abundant COOH (26.45%) at the edges. These peculiar structural and compositional merits of ECG lead to the hydrolysis of cellulose to glucose in high yield (87%) alongside the hydrolysis of eucalyptus to xylose (89%) and glucose (65%) within 20 min at 180 °C in the presence of HCl (120 ppm). Meanwhile, ECG hydrolyzed eucalyptus into xylose (98%) in water, owing to its layered structure, hydrophilicity, and synergistic effect. The catalytic performance of the ECG catalyst was benchmarked as a function of COOH content relative to pristine graphite and HCl. The hydrolysis mechanism and kinetics of ECG over cellulose were deciphered via various reaction experiments, conditions, and pretreatments. The present study may open new horizons towards the utilization of ECG in the hydrolysis of biomass.
    DOI/handle
    http://dx.doi.org/10.1039/d0gc01561j
    http://hdl.handle.net/10576/31360
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]
    • Materials Science & Technology [‎315‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video