• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Salinity gradient energy generation by pressure retarded osmosis: A review

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2021-03-15
    Author
    Ralph Rolly, Gonzales
    Abdel-Wahab, Ahmed
    Adham, Samer
    Han, Dong Suk
    Phuntsho, Sherub
    Suwaileh, Wafa
    Hilal, Nidal
    Shon, Ho Kyong
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Pressure retarded osmosis (PRO) has gained attention due to its use as a salinity gradient energy-generating membrane process. This process can convert difference in salinity between two streams into energy as it allows water transport through a semi-permeable membrane against the application of hydraulic pressure. This review provides a comprehensive look at the history and latest developments in preparation of membranes and modules for the PRO process, as well as the various applications of PRO. This review also explored the influence of feed characteristics and pretreatment strategies on water permeation and power generation during PRO operation. The current status and technological advancements of PRO as a process were reviewed, revealing how PRO can be operated as a stand-alone process or in integration with other hybrid processes. Despite the recent advancements in material and process development for PRO, membrane performance, wide-scale implementation, and commercialization efforts still leave much to be desired. Recognizing the current challenges facing the PRO technology, the advancements in PRO membrane and module development, and the various applications of the process, this review also draws out the future direction of PRO research and generation of osmotic salinity gradient energy as a viable energy source.
    URI
    https://www.sciencedirect.com/science/article/pii/S0011916420315198
    DOI/handle
    http://dx.doi.org/10.1016/j.desal.2020.114841
    http://hdl.handle.net/10576/33856
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video