• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Engineering graphitic carbon nitride (g-C3N4) for catalytic reduction of CO2 to fuels and chemicals: strategy and mechanism

    Thumbnail
    Date
    2021-08-07
    Author
    Lu, Qingqing
    Eid, Kamel
    Li, Wenpeng
    Abdullah, Aboubakr M.
    Xu, Guobao
    Varma, Rajender S.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The reduction of carbon dioxide to useful fuels/chemicals, such as methane, formic, and methanol, is an innovative way to address looming energy and environmental issues. Graphitic carbon nitride (g-C3N4), as a greener and low-cost catalyst for the electrocatalytic and photocatalytic carbon dioxide reduction reaction (CO2RR) to provide usable fuels, is endowed with numerous appealing attributes, e.g., Earth-abundant resources, facile synthesis, metal-free nature, catalytic properties, and unique thermal-physical-chemical stability. Articles on the use of g-C3N4 for CO2 transformation have increased significantly in the past decade, and it is important to provide timely updates in this emerging and active research area. This review emphasizes the rational structural engineering of g-C3N4, including doping (i.e., metal, non-metal, and molecular) and heterojunction formation (i.e., metal, metal oxide, metal phosphide, metal hydroxide, metal complex, Ag-halides, and carbon materials) for electrocatalytic, photoelectrocatalytic, and photocatalytic CO2RR. Besides, an in-depth deciphering of the CO2RR mechanism from experimental, theoretical, and fundamental concepts is provided, including deliberation on the sources/emission and strategies to avoid/reduce CO2 emission. Lastly, a brief conclusion and outlook on the challenges and future prospects are highlighted to assist further in the rational design of the g-C3N4-based catalyst as a selective and efficient catalyst for the CO2RR.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85112353264&origin=inward
    DOI/handle
    http://dx.doi.org/10.1039/d1gc01303c
    http://hdl.handle.net/10576/34443
    Collections
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video