• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comprehensive optimization of the dispersion of mixing particles in an inert-particle spouted-bed reactor (Ipsbr) system

    Thumbnail
    View/Open
    processes-09-01921-v2 (1).pdf (4.876Mb)
    Date
    2021
    Author
    Mohammad, Ameera F.
    Mourad, Aya A.-H. I.
    Al-Marzouqi, Ali H.
    El-Naas, Muftah H.
    Bruggen, Bart V.
    Al-Marzouqi, Mohamed H.
    Alnaimat, Fadi
    Al Musharfy, Mohamed
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Effective gas dispersion and liquid mixing are significant parameters in the design of an inert-particle spouted-bed reactor (IPSBR) system. Solid particles can be used to ensure good mixing and an efficient rate of mass and heat transfer between the gas and liquid. In this study, computational fluid dynamics (CFD) coupled with the discrete phase model (DPM) were developed to investigate the effect of the feed gas velocity (0.5-1.5 m/s), orifice diameter (0.001-0.005 m), gas head (0.15-0.35 m), particle diameter (0.009-0.0225 m), and mixing-particle-to-reactor-volume fraction (2.0-10.0 vol.%) on the solid mass concentration, average solid velocity, and average solid volume fraction in the upper, middle, and conical regions of the reactor. Statistical analysis was performed using a second-order response surface methodology (RSM) with central composite design (CCD) to obtain the optimal operating conditions. Selected parameters were optimized to maximize the responses in the middle and upper regions, and minimize them in the conical region. Such conditions produced a high interfacial area and fewer dead zones owing to good particle dispersion. The optimal process variables were feed gas velocity of 1.5 m/s, orifice diameter of 0.001 m, gas head of 0.2025 m, a particle diameter of 0.01 m, and a particle load of 0.02 kg. The minimum average air velocity and maximum air volume fraction were observed under the same operating conditions. This confirmed the novelty of the reactor, which could work at a high feed gas velocity while maintaining a high residence time and gas volume fraction.
    DOI/handle
    http://dx.doi.org/10.3390/pr9111921
    http://hdl.handle.net/10576/34640
    Collections
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video