• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effects of potassium hydroxide and aluminum oxide on the performance of a modified solvay process for CO2 capture: A comparative study

    Thumbnail
    Date
    2021
    Author
    Mourad A.A.H.I.
    Mohammad A.F.
    Altarawneh M.
    Al-Marzouqi A.H.
    El-Naas M.H.
    Al-Marzouqi M.H.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In a previous work, the overall performance of modified Solvay process was investigated in the absence of ammonia, where carbon dioxide and brine treatments were accomplished in a single reaction and in the presence of calcium hydroxide (Ca(OH)2). In this study, the impact of alkaline and amphoteric oxides, namely potassium hydroxide (KOH) and aluminum oxide (Al2O3), on the pH level, CO2 capture capacity, ions reduction, and type of produced solids was investigated at a temperature of 20�C and a gas flow rate of 1 L/min. At the stoichiometric ratio and less than the solubility limit, the KOH/brine mixture achieved a CO2 uptake of 0.31 g CO2/g KOH. In comparison, about 0.92 g of CO2 was captured by 1 g of CaO when CaO was added to the brine in an amount that was more than the solubility limit but less than the stoichiometric ratio. Moreover, the percentage of the ions reduction for the KOH and CaO was almost the same except for the sulfate ions, as the best removal was for the CaO. The poorest CO2 capture and ions removal occurred with the Al2O3. X-ray diffraction was used to identify most of the solid products, and the obtained results proved that KOH is a promising alkaline for the combined process. In addition, potassium chloride crystals were produced when KOH was utilized, which is a very valuable product, and it can also be easily separated. Although Al2O3 showed no reactivity, it revealed good results in terms of magnesium ions recovery and could be considered as a coagulant for recovering magnesium ions in the reject brine solution.
    DOI/handle
    http://dx.doi.org/10.1002/er.6737
    http://hdl.handle.net/10576/34647
    Collections
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video