• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Electrodialysis based waste utilization methodology for the desalination industry

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2021
    Author
    Mustafa, Jawad
    Al-Marzouqi, Ali H.
    El-Naas, Muftah H.
    Ghasem, Nayef
    Metadata
    Show full item record
    Abstract
    High salinilty wastewater and carbon dioxide are major hurdles in implementing a sustainable desalination technology. This study proposes an electrodialysis (ED) technique for onsite utilization of desalination reject brine into value-added products, such as carbonate salts and inorganic acid. The parameters that defined the overall system performance included the current efficiency, the mass of captured CO2, metal removal percentage, total energy consumption, and specific energy consumption. Sodium chloride (NaCl) is used as representative of saline wastewater. The effects of NaCl concentration, CO2 flow rate, and voltage on the process performance are evaluated. A six-chamber ED cell with a batch circulation process for the CO2 chamber with a cathodic chamber is adopted to investigate the process. The ED cell contained cation-exchange membranes, anion-exchange membranes, and electrodes. Membranes are arranged in a specific pattern to collect hydrochloric acid and carbonate salts in separate chambers. NaCl solution and a gas mixture containing 10% CO2 and 90% N2 are used as feed to the ED cell. The cathodic and CO2 chambers are linked to each other through the batch circulation mode. The anode and cathode are made of titanium, and the anode is coated with mixed oxides of iridium and platinum. The current efficiency, mass of captured CO2, metal (sodium) removal percentage, specific energy consumption, and total energy consumption ranged from 81.4%-99.8%, 3.88 g-8.2 g, 12.8%-38.7%, 352.9 g/kWh-435.2 g/kWh, and 0.023kWh-0.070kWh, respectively.
    DOI/handle
    http://dx.doi.org/10.1016/j.desal.2021.115327
    http://hdl.handle.net/10576/34648
    Collections
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video