• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    TiO2 encrusted MXene as a High-Performance anode material for Li-ion batteries

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0169433222000241-main.pdf (6.961Mb)
    Date
    2022
    Author
    Abdurehman Tariq H., Nisar U., James Abraham J., Ahmad Z., AlQaradawi S., Kahraman R., Shakoor R.A.
    Metadata
    Show full item record
    Abstract
    TiO2 has the potential to be a viable anode material for high-power lithium-ion batteries (LIBs). However, the lower electronic conductivity of TiO2 limits its practical applications. Here, the synthesis of novel TiO2 decorated Ti3C-MXene anode for LIBs using in-situ hydrolysis is discussed. MXenes are well known for their outstanding structural stability and superior electronic conductivities; thus, using MXenes as a host material for TiO2 may improve its structural and electrical characteristics. Scanning and transmission electron microscopy (SEM & TEM) examination revealed that the in-situ method resulted in a uniform and comformal coating of TiO2 (27.5 nm) on the inner and outer surfaces of MXene surfaces. BET analysis revealed that the larger surface area of MXene-TiO2 nanocomposite enhanced the active sites for lithium intercalation, which improved electrochemical performance. Furthermore, electrochemical impedance spectroscopy (EIS) analysis revealed faster kinetics for MXene-TiO2 materials when compared to the TiO2 anode. Compared to pristine TiO2 anode, 5 wt% MXene-TiO2 nanocomposite showed significantly better electrochemical performance, with an electrochemical capacity of around 200 mAhg?1 at 0.1C. Nanocomposites based on MXene-TiO2 exhibit outstanding electrochemical performance, indicating the potential for using MXene-based nanocomposites as an anode in high-performance lithium-ion batteries.
    DOI/handle
    http://dx.doi.org/10.1016/j.apsusc.2022.152441
    http://hdl.handle.net/10576/34817
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]
    • Chemical Engineering [‎1196‎ items ]
    • Chemistry & Earth Sciences [‎605‎ items ]
    • Research of Qatar University Young Scientists Center [‎213‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video