• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Transportation and Traffic Safety Center
  • Traffic Safety
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Transportation and Traffic Safety Center
  • Traffic Safety
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Defensive or competitive Autonomous Vehicles: Which one interacts safely and efficiently with pedestrians?

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0378437122006720-main.pdf (2.456Mb)
    Date
    2022-11-15
    Author
    Hong, Zhu
    Alhajyaseen, Wael
    Iryo-Asano, Miho
    Nakamura, Hideki
    Dias, Charitha
    Metadata
    Show full item record
    Abstract
    The emergence of Autonomous Vehicles (AVs) could provoke unexpected challenges in urban traffic environments. One such crucial challenge is the conflicts between pedestrians and AVs, particularly on unsignalized mid-block crosswalks (UMC), where pedestrians are exposed to the AV flow. This study investigates the efficiency and safety performance of a UMC in the presence of both AVs and pedestrians considering the diversities in their behaviors. Through empirical analyses, two pedestrians’ crossing decision models are built and four groups of speed profiles are classified. Meanwhile, based on previous literature, defensive and competitive driving strategies are assumed for AVs. The simulation is implemented on an agent-based framework that can dynamically reproduce the kinematic interactions between pedestrians and vehicles. Results indicated that with a reasonable safety margin (2.5 s), percentages of low post encroachment time events for competitive AVs with different pedestrian types are smaller than defensive AVs with differences of 0.2% to 2.9%. The average delays of competitive AVs for all pedestrian types are smaller than defensive AVs with a maximum estimated difference of 39 s. Moreover, the analysis showed that lowering the speed limit may reduce the crash rate of competitive AV up to 0%. It is also found that the pedestrians who make reckless crossing decisions and change their speed drastically during the crossing process are more likely to incur crashes with competitive AVs. Therefore, if pedestrian behaviors can be regulated reasonably, competitive AVs with appropriate parameter settings are most suitable for UMC in the future.
    URI
    https://www.sciencedirect.com/science/article/pii/S0378437122006720
    DOI/handle
    http://dx.doi.org/10.1016/j.physa.2022.128083
    http://hdl.handle.net/10576/34969
    Collections
    • Civil and Environmental Engineering [‎862‎ items ]
    • Traffic Safety [‎163‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video