• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Elastic Resource Allocation Algorithm Based on Dispersion Degree for Hybrid Requests in Satellite Optical Networks

    Thumbnail
    Date
    2022-05-01
    Author
    Li, Yiqiang
    Zhang, Qi
    Gao, Ran
    Xin, Xiangjun
    Yao, Haipeng
    Tian, Feng
    Guizani, Mohsen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The satellite-assisted Internet of Things (IoT) communication is considered a key component of the 6G network, and low Earth orbit (LEO) satellite is the leading choice of IoT-related satellites due to its minimum delay. Hybrid requests, including immediate reservation (IR) and advanced reservation (AR) services in LEO satellite netoworks cause the occurrence of resource fragments (RFrags), which adversely affect the network performance. To alleviate the degradation of network performance caused by resource fragmentation, a routing, wavelength, and time-slots assignment algorithm, which is named elastic resource allocation algorithm based on the dispersion degree (ERA-DD), is proposed in this article. Possible resource fragmentation types are analyzed and a fragmentation description named dispersion degree (DD) is designed. In the DD, the number of free resource blocks is accurately described by the state jumps (SJs) of adjacent resource slots, and the numerical relationship between SJs and free resource blocks is proposed and proved. Besides, restrictions on the selection priority of candidate schemes in the ERA-DD algorithm are analyzed. Finally, the traffic blocking rate, the wavelength utilization, the average communication delay, and the average initial delay are evaluated by simulation. The results demonstrate that RFrags are more fully utilized compared with the maximum total link spectrum consecutiveness (MTLSC) algorithm. The traffic blocking rate can be reduced by 32.5% and wavelength utilization can be increased by 1.6%.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85115177037&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/JIOT.2021.3112617
    http://hdl.handle.net/10576/35007
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video