عرض بسيط للتسجيلة

المؤلفHashemi, Behnam
المؤلفNakatsukasa, Yuji
تاريخ الإتاحة2022-10-18T10:24:26Z
تاريخ النشر2022-10-11
اسم المنشورSIAM Journal on Scientific Computing
المعرّفhttp://dx.doi.org/10.1137/21M1445934
الاقتباسHashemi, B., & Nakatsukasa, Y. (2022). Least-squares spectral methods for ODE eigenvalue problems. SIAM Journal on Scientific Computing, 44(5), A3244-A3264.
الرقم المعياري الدولي للكتاب1064-8275
معرّف المصادر الموحدhttp://hdl.handle.net/10576/35191
الملخصWe develop spectral methods for ODEs and operator eigenvalue problems that are based on a least-squares formulation of the problem. The key tool is a method for rectangular generalized eigenvalue problems, which we extend to quasimatrices and objects combining quasimatrices and matrices. The strength of the approach is its flexibility that lies in the quasimatrix formulation allowing the basis functions to be chosen arbitrarily, a good choice (e.g. those obtained by solving nearby problems) leading to rapid convergence, and often giving high accuracy. We also show how our algorithm can easily be modified to solve problems with eigenvalue-dependent boundary conditions, and discuss reformulations as an integral equation, which often improves the accuracy.
راعي المشروعIran National Science Foundation (INSF) grant 98012590 and by a grant from IPM (No. 1400650036).
اللغةen
الناشرSociety for Industrial and Applied Mathematics
الموضوعoperator eigenvalue problems
least-squares method
rectangular matrix pencils
spectral methods
quasimatrix
العنوانLeast-squares spectral methods for ODE eigenvalue problems
النوعArticle
الصفحاتA3244 - A3264
رقم العدد5
رقم المجلد44
ESSN1095-7197
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail
Thumbnail
Icon

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة