Least-squares spectral methods for ODE eigenvalue problems
المؤلف | Hashemi, Behnam |
المؤلف | Nakatsukasa, Yuji |
تاريخ الإتاحة | 2022-10-18T10:24:26Z |
تاريخ النشر | 2022-10-11 |
اسم المنشور | SIAM Journal on Scientific Computing |
المعرّف | http://dx.doi.org/10.1137/21M1445934 |
الاقتباس | Hashemi, B., & Nakatsukasa, Y. (2022). Least-squares spectral methods for ODE eigenvalue problems. SIAM Journal on Scientific Computing, 44(5), A3244-A3264. |
الرقم المعياري الدولي للكتاب | 1064-8275 |
الملخص | We develop spectral methods for ODEs and operator eigenvalue problems that are based on a least-squares formulation of the problem. The key tool is a method for rectangular generalized eigenvalue problems, which we extend to quasimatrices and objects combining quasimatrices and matrices. The strength of the approach is its flexibility that lies in the quasimatrix formulation allowing the basis functions to be chosen arbitrarily, a good choice (e.g. those obtained by solving nearby problems) leading to rapid convergence, and often giving high accuracy. We also show how our algorithm can easily be modified to solve problems with eigenvalue-dependent boundary conditions, and discuss reformulations as an integral equation, which often improves the accuracy. |
راعي المشروع | Iran National Science Foundation (INSF) grant 98012590 and by a grant from IPM (No. 1400650036). |
اللغة | en |
الناشر | Society for Industrial and Applied Mathematics |
الموضوع | operator eigenvalue problems least-squares method rectangular matrix pencils spectral methods quasimatrix |
النوع | Article |
الصفحات | A3244 - A3264 |
رقم العدد | 5 |
رقم المجلد | 44 |
ESSN | 1095-7197 |
الملفات في هذه التسجيلة
هذه التسجيلة تظهر في المجموعات التالية
-
الرياضيات والإحصاء والفيزياء [738 items ]