عرض بسيط للتسجيلة

المؤلفElayan, Haya
المؤلفAloqaily, Moayad
المؤلفGuizani, Mohsen
تاريخ الإتاحة2022-10-27T08:40:01Z
تاريخ النشر2021-12-01
اسم المنشورIEEE Internet of Things Journal
المعرّفhttp://dx.doi.org/10.1109/JIOT.2021.3051158
الاقتباسElayan, H., Aloqaily, M., & Guizani, M. (2021). Digital twin for intelligent context-aware IoT healthcare systems. IEEE Internet of Things Journal, 8(23), 16749-16757.‏
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85099592329&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/35509
الملخصSince the emergence of digital and smart healthcare, the world has hastened to apply various technologies in this field to promote better health operation and patients' well being, increase life expectancy, and reduce healthcare costs. One promising technology and game changer in this domain is digital twin (DT). DT is expected to change the concept of digital healthcare and take this field to another level that has never been seen before. DT is a virtual replica of a physical asset that reflects the current status through real-time transformed data. This article proposes and implements an intelligent context-aware healthcare system using the DT framework. This framework is a beneficial contribution to digital healthcare and to improve healthcare operations. Accordingly, an electrocardiogram (ECG) heart rhythms classifier model was built using machine learning to diagnose heart disease and detect heart problems. The implemented models successfully predicted a particular heart condition with high accuracy in different algorithms. The collected results have shown that integrating DT with the healthcare field would improve healthcare processes by bringing patients and healthcare professionals together in an intelligent, comprehensive, and scalable health ecosystem. Also, implementing an ECG classifier that detects heart conditions gives the inspiration for applying ML and artificial intelligence with different human body metrics for continuous monitoring and abnormalities detection. Finally, neural-network-based algorithms deal better with ECG data than traditional ML algorithms.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعDigital twin (DT)
electrocardiogram (ECG)
Internet of Things (IoT)
machine learning
smart healthcare%
العنوانDigital Twin for Intelligent Context-Aware IoT Healthcare Systems
النوعArticle
الصفحات16749-16757
رقم العدد23
رقم المجلد8
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة