SFET-based multiple antenna spectrum sensing using the second order moments of eigenvalues
Abstract
In this paper, we propose a new detector for multiantenna spectrum sensing in cognitive radios (CR) by exploiting the Separating Function Estimation Test (SFET) framework. Specifically, we consider a blind scenario for multiantenna spectrum sensing in which both the channel gains and noise variance are assumed to be unknown. For such a scenario, we find an appropriate Separating Function (SF) whose Maximum Likelihood Estimate (MLE) leads us to a SFET-based detector which uses the second order moments of the eigenvalues of the Sample Covariance Matrix (SCM). We also find closed-form expressions for the detection and false-alarm probabilities of the proposed detector. The performance of the proposed detector asymptotically tends to that of the Uniformly Most Powerful Unbiased (UMPU) detector as the number of independent and identically distributed observations increases. In addition, simulation results show that the proposed detector outperforms the state-of-art eigenvalue- based detectors because of using the second order moments of the SCM eigenvalues. 2015 IEEE.
Collections
- Computer Science & Engineering [2402 items ]
- Electrical Engineering [2647 items ]