عرض بسيط للتسجيلة

المؤلفGuan, Donghai
المؤلفChen, Kai
المؤلفHan, Guangjie
المؤلفHuang, Shuqiang
المؤلفYuan, Weiwei
المؤلفGuizani, Mohsen
المؤلفShu, Lei
تاريخ الإتاحة2022-11-08T09:44:22Z
تاريخ النشر2021-03-01
اسم المنشورIEEE Transactions on Industrial Informatics
المعرّفhttp://dx.doi.org/10.1109/TII.2020.3012658
الاقتباسGuan, D., Chen, K., Han, G., Huang, S., Yuan, W., Guizani, M., & Shu, L. (2020). A novel class noise detection method for high-dimensional data in industrial informatics. IEEE Transactions on Industrial Informatics, 17(3), 2181-2190.‏
الرقم المعياري الدولي للكتاب15513203
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85097895749&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/35926
الملخصThe data in industrial informatics may be high-dimensional and mislabeled. Irrelevant or noisy features pose a significant challenge to the detection of high-dimensional mislabeling. The traditional method usually adopts a two-step solution, first finding the relevant subspace and then using it for mislabeling detection. This two-step method struggles to provide the optimal mislabeling detection performance, since it separates the procedures of feature selection and label error detection. To solve this problem, in this article, we integrate the two steps and propose a sequential ensemble noise filter (SENF). In the SENF, relevant features are selected and used to generate a noise score for each instance. Continuously, these noise scores guide feature selection in the regression learning. Thus, the SENF falls in the scope of sequential ensemble learning. We evaluate our approach on several benchmark datasets with high dimensionality and much label noise. It is shown that the SENF is significantly better than other existing label noise detection methods.
راعي المشروعThis work was supported in part by the National Key Research, and Development Program under Grant 2017YFE0125300 and Grant 2018YFB1702700, in part by the National Natural Science Foundation of China under Grant 61672284 and Grant 61772233, in part by the Key Research and Development Program of Jiangsu Province under Grant BE2019012 and Grant BE2019648, and in part by the project of Shenzhen Science and Technology Innovation Committee under Grant JCYJ20190809145407809.
اللغةen
الموضوعHigh dimension
industrial informatics
noise filtering
العنوانA Novel Class Noise Detection Method for High-Dimensional Data in Industrial Informatics
النوعArticle
الصفحات2181-2190
رقم العدد3
رقم المجلد17
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة