عرض بسيط للتسجيلة

المؤلفHamdi, Rami
المؤلفSaid, Ahmed Ben
المؤلفErbad, Aiman
المؤلفMohamed, Amr
المؤلفHamdi, Mounir
المؤلفGuizani, Mohsen
تاريخ الإتاحة2022-11-09T20:26:31Z
تاريخ النشر2021-01-01
اسم المنشور2021 IEEE Global Communications Conference, GLOBECOM 2021 - Proceedings
المعرّفhttp://dx.doi.org/10.1109/GLOBECOM46510.2021.9685344
الاقتباسHamdi, R., Said, A. B., Erbad, A., Mohamed, A., Hamdi, M., & Guizani, M. (2021, December). Hierarchical Federated Learning over HetNets enabled by Wireless Energy Transfer. In 2021 IEEE Global Communications Conference (GLOBECOM) (pp. 01-06). IEEE.‏
الترقيم الدولي الموحد للكتاب 9781728181042
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85127301173&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/35985
الملخصTraining centralized machine learning (ML) models becomes infeasible in wireless networks due to the increasing number of internet of things (IoT) and mobile devices and the prevalence of the learning algorithms to adapt tasks in dynamic situations with heterogeneous networks (HetNets) and battery limited devices. Hierarchical federated learning (HFL) has been proposed as a promising learning that can preserve the data privacy of the wireless devices, tackle the communication bottlenecks in wireless networks, and improve the energy effi-ciency. We propose a novel energy-efficient HFL framework for HetNets with massive multiple-input multiple-output (MIMO) wireless backhaul enabled by wireless energy transfer (WET). We formulate a joint energy management and device association optimization problem in HFL over HetNets subject to maximal divergence constraints. Next, an optimal solution is developed, but with high complexity. To reduce the complexity, a heuristic algorithm for HFL over HetNets with energy, channel quality, and accuracy constraints, is developed in order to minimize the grid energy consumption cost and preserve the value of loss function, which captures the HFL performance. Simulation results show the efficiency of the proposed resource management approach in the HFL context in terms of grid power consumption cost and training loss.
راعي المشروعThis work was made possible by NPRP-Standard (NPRP-S) Thirteen (13th) Cycle grant # NPRP13S-0205-200265 from the Qatar National Research Fund (a member of Qatar Foundation). The findings herein reflect the work, and are solely the responsibility, of the authors.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعdevice association
energy efficiency
HetNets
Hierarchical federated learning
العنوانHierarchical Federated Learning over HetNets enabled by Wireless Energy Transfer
النوعConference
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة