عرض بسيط للتسجيلة

المؤلفDawoud, Heba D.M.
المؤلفAllahham, Mhd Saria
المؤلفAbdellatif, Alaa Awad
المؤلفMohamed, Amr
المؤلفErbad, Aiman
المؤلفGuizani, Mohsen
تاريخ الإتاحة2022-11-10T08:09:43Z
تاريخ النشر2021-01-01
اسم المنشور2021 IEEE Global Communications Conference, GLOBECOM 2021 - Proceedings
المعرّفhttp://dx.doi.org/10.1109/GLOBECOM46510.2021.9685304
الاقتباسDawoud, H. D., Allahham, M. S., Abdellatif, A. A., Mohamed, A., Erbad, A., & Guizani, M. (2021, December). Patient-Driven Network Selection in multi-RAT Health Systems Using Deep Reinforcement Learning. In 2021 IEEE Global Communications Conference (GLOBECOM) (pp. 1-6). IEEE.‏
الترقيم الدولي الموحد للكتاب 9781728181042
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85127244609&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/36070
الملخصThe recent pandemic along with the rapid increase in the number of patients that require continuous remote monitoring imposes several challenges to support the high quality of services (QoS) in remote health applications. Remote-health (r-health) systems typically demand intense data collection from different locations within a strict time constraint to support sustainable health services. On the contrary, the end-users with mobile devices have limited batteries that need to run for a long time, while continuously acquiring and transmitting health-related information. Thus, this paper proposes an adaptive deep reinforcement learning (DRL) framework for network selection over heteroge-neous r-health systems to enable continuous remote monitoring for patients with chronic diseases. The proposed framework allows for selecting the optimal network(s) that maximizes the accumulative reward of the patients while considering the patients' state. Moreover, it adopts an adaptive compression scheme at the patient level to further optimize the energy consumption, cost, and latency. Our results depict that the proposed framework outperforms the state-of-the-art techniques in terms of battery lifetime and reward maximization.
راعي المشروعThis work was made possible by NPRP grant # NPRP12S-0305-190231 from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعdeep reinforcement learning
heterogeneous network
Internet of Things
Remote monitoring
العنوانPatient-Driven Network Selection in multi-RAT Health Systems Using Deep Reinforcement Learning
النوعConference Paper
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة