• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Machine learning aided load balance routing scheme considering queue utilization

    Thumbnail
    Date
    2019
    Author
    Yao, Haipeng
    Yuan, Xin
    Zhang, Peiying
    Wang, Jingjing
    Jiang, Chunxiao
    Guizani, Mohsen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Due to the rapid development of network techniques, packet-switched systems experience high-speed growth of traffic, which imposes a heavy and unbalanced burden on the routers. Hence, efficient routing schemes are required in order to achieve load balance. By decoupling the control plane and the data plane, Software-Defined Network (SDN) shows its flexibility and extensibility to achieve the automatic management of network resources. Based on the SDN architecture, we propose a pair of machine learning aided load balance routing schemes considering the queue utilization (QU), which divide the routing process into three steps, namely the dimension reduction, the QU prediction, as well as the load balance routing. To the best of our knowledge, it is the first time that principal component analysis (PCA) is used for the dimension reduction of the substrate network. Furthermore, QU prediction is conducted with the aid of neural network algorithms for the sake of coping with the network congestion resulting from burst traffic. Finally, simulation results show that our proposed routing schemes considering QU predicted by the machine learning algorithms outperform the traditional Bellman-Ford (BF) routing strategy in terms of the average packet loss ratio, the worst throughput and the average delay. 2019 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TVT.2019.2921792
    http://hdl.handle.net/10576/36108
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video