SecAuthUAV: A Novel Authentication Scheme for UAV-Ground Station and UAV-UAV Communication
Abstract
Unmanned Aerial Vehicles (UAVs) are becoming very popular nowadays due to the emergence of application areas such as the Internet of Drones (IoD). They are finding wide applicability in areas ranging from package delivery systems to automated military applications. Nevertheless, communication security between a UAV and its ground station (GS) is critical for completing its task without leaking sensitive information either to the adversaries or to unauthenticated users. UAVs are especially vulnerable to physical capture and node tampering attacks. Further, since UAV devices are generally equipped with small batteries and limited memory storage, lightweight security techniques are best suited for them. Addressing these issues, a lightweight mutual authentication scheme based on Physical Unclonable Functions (PUFs) for UAV-GS authentication is presented in this paper. The UAV-GS authentication scheme is extended further to support UAV-UAV authentication. We present a formal security analysis as well as old-fashioned cryptanalysis and show that our protocol provides various security features such as mutual authentication, user anonymity, etc, and is resilient against many security attacks such as masquerade, replay, node tampering, and cloning attacks, etc. We also compare the performance of our protocol with state-of-the-art authentication protocols for UAVs, based on computation, communication, and memory storage cost.
Collections
- Computer Science & Engineering [2402 items ]