A blockchainized privacy-preserving support vector machine classification on mobile crowd sensed data
المؤلف | Smahi, Abla |
المؤلف | Xia, Qi |
المؤلف | Xia, Hu |
المؤلف | Sulemana, Nantogma |
المؤلف | Fateh, Ahmed Ameen |
المؤلف | Gao, Jianbin |
المؤلف | Du, Xiaojiang |
المؤلف | Guizani, Mohsen |
تاريخ الإتاحة | 2022-11-29T13:49:39Z |
تاريخ النشر | 2020-07-01 |
اسم المنشور | Pervasive and Mobile Computing |
المعرّف | http://dx.doi.org/10.1016/j.pmcj.2020.101195 |
الاقتباس | Smahi, A., Xia, Q., Xia, H., Sulemana, N., Fateh, A. A., Gao, J., ... & Guizani, M. (2020). A blockchainized privacy-preserving support vector machine classification on mobile crowd sensed data. Pervasive and Mobile Computing, 66, 101195. |
الرقم المعياري الدولي للكتاب | 15741192 |
الملخص | The voluminous amount of data generated by individuals’ mobile sensors and wearable devices is considered of a great value for the benefits of patients and clinical research. Recent advances incorporating data mining and cloud computing have leveraged the great potential of these data. However, the introduction of such technologies in the process of mobile crowd sensed data mining and analytics could potentially lead to security and privacy concerns. Individuals and organizations are not able to share and collectively run computations on their private data captured by different sensors to infer any processes of common interest. Although solutions such as Secure Multiparty Computation (SMC) were laid decades ago, they are still perceived for theoretical interest only, so far. In this paper, we aim at bridging the gap between privacy-preserving data mining and its practice. To do so, we introduce a blockchain-based privacy-preserving SVM classification (BPPSVC) between mutually distrustful data owners. In BPPSVC, blockchain technology along with smart contracts underlay more realistic assumptions about the adversarial model. Our main focus is on investigating the immutability, security and the bookkeeping properties of the blockchain in preserving the privacy of an SVM classifier over horizontally distributed IoT data. To this end, we first propose the system architecture, adversary model and design goals of BPPSVC, then we describe the design details. Our security analysis indicates that the proposed system is secure and it provides fairness and protection against Denial of Service (DoS) attacks. We finally show the efficiency and feasibility of BPPSVC through rigorous experimental results. |
راعي المشروع | This work was partially supported by the Program of International Science and Technology Cooperation and Exchange of Sichuan Province, China (2017HH0028, 2018HH0102, 2019YFH0014, 2020YFH0030), and by the Science and Technology Program of Sichuan Province, China (2020YFSY0061). This work was also sponsored by CCF-Tencent Open Research Fund WeBank Special Funding, China. |
اللغة | en |
الناشر | Elsevier B.V. |
الموضوع | Blockchain Mobile crowd sensing Secure dot product Secure multiparty computation Smart contract State channels SVM |
النوع | Article |
رقم المجلد | 66 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]